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Digital PLL’s, Part 3 – Phase Lock an NCO to an External Clock 

 

Sometimes you may need to phase-lock a numerically controlled oscillator (NCO) to an external clock 

that is not related to the system clocks of your ASIC or FPGA.  This situation is shown in Figure 1.  

Assuming your system has an analog-to-digital converter (ADC) available, you can sync to the external 

clock using the scheme shown in Figure 2.  This time-domain PLL model is similar to the one presented in 

Part 1 of this series on digital PLL’s [1].  In that PLL, we dealt with phases only, which resulted in a very 

simple model.  Here, we have a sinusoidal reference signal instead of a phase reference signal, so we 

need to make some modifications.   

 

Our new model adds a Hilbert transformer and a complex digital phase detector (PD).  The Hilbert 

transformer converts the real input to a complex signal.  The complex PD compares the phase of this 

signal to that of the complex sinusoidal output of the NCO.  The model includes ADC quantization noise 

and the Gaussian noise of the ADC and external clock, allowing us to examine how they affect the NCO 

output phase noise.  However, the model does not include the phase noise contributions of the PLL 

sample clock or the external clock. 

 

In this post, I’ll describe the components of the PLL and then perform a couple of simulations.  A word of 

caution:  I have not implemented this design in hardware, so there may be gotchas with the approach 

that I have not anticipated. 
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Figure 1.  How do you phase-lock the NCO to an external clock that is unrelated to the system clocks? 
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Figure 2.  PLL to phase-lock an NCO to an external clock (wide lines are complex signals). 

 

 

Hilbert Transformer 

 

Here we’ll use the same 31-tap Hilbert transformer presented in an earlier post [2].  Its Matlab code is 

part of the m-file listed in the Appendix.  For sinusoidal input, the Hilbert Transformer generates I and Q 

sinusoids, with Q lagging I by π/2.  The pure-imaginary frequency response of Q/I is plotted in Figure 3.  

For sample frequency of 40 MHz, this design allows an input frequency range of roughly 4 MHz to 16 

MHz (flat region of the response).  

 

 
Figure 3.  Frequency Response of Hilbert Transformer, fs = 40 MHz. 
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Complex Digital Phase Detector 

 

In the following, we refer to the external clock as the reference clock, and we make the simplifying 

assumption that it is sinusoidal.  The phase detector computes the phase difference of two complex 

sinusoidal inputs [3].  A conceptual block diagram of this remarkably simple device is shown in Figure 4.  

Note that the NCO input has a negative exponent (inverted phase).  The output is simply the imaginary 

part of the complex product of the two inputs: 

 

                                                                      

 

                                   

 

                                     

 

The terms involving ω have canceled, leaving a slowly rotating or stationary phase difference.  Equation 

1 is plotted in Figure 5 for A = 1.  The useful phase error range is from -1/4 to +1/4 cycles or –π/4 to +π/4 

radians.  The phase detector gain is the slope of the curve near zero, which (since sin(x) ~= x for small x) 

is  -A rad-1.  The gain in cycles-1 is thus -2πA. 

 

Given phase detector inputs Iref/Qref and Inco/-Qnco (where the negative sign inverts the NCO phase), the 

output is: 

 

                                

 

                                 

 

Equation 2 is implemented by the block diagram in Figure 6.  As you can see, just two multipliers and an 

adder are used. 

 

 

 
 

 

Figure 4.  Complex Digital Phase Detector Conceptual Diagram (wide lines are complex). 
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Figure 5.  Phase Detector Characteristic, sinusoidal input amplitude = 1. 

 

 

 

 

 

 
 

Figure 6.  Implementation of Complex Digital Phase Detector. 
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Loop Filter 

 

I discussed calculation of the loop filter coefficients for a 2nd order PLL in Part 2 [4].  The formulas for the 

coefficients are: 

    

   
    

   
  

  
    

             

 

   
  

 

   
 

  
 

    
                

 

Where KL and KI are the proportional and integrator gains of the loop filter in Figure 7, and the other 

parameters are defined as follows: 

 

ζ  desired loop damping factor (dimensionless)   

ωn desired loop natural frequency, rad/s 

Kp phase detector gain, cycle-1 

Knco nco gain (dimensionless) 

Ts sample time, s 

 

In the model, I have assumed the reference clock is a sine with amplitude A = 1.  This gives phase 

detector gain Kp = 2π cycles-1.  I used damping factor ζ = 1.   

 

For larger values of loop natural frequency, KL may be greater than one, causing the loop filter output 

level to exceed +/- 1 during acquisition.  The loop filter output should clip (not roll-over).  Clipping can 

hurt acquisition, so typically the clip level is set higher than the expected excursion of the loop filter 

output.  It may be appropriate to set clip level to a value greater than +/-1.   

 

NCO 

 

We developed the difference equations for the NCO (shown in Figure 7) in Part 1 [1].  The NCO used 

here has a couple of modifications from the Part 1 example: 

1. We quantize the phase to 20 bits and the I/Q outputs to 12 bits. 

2. In Part 1, we used the NCO’s phase output as the input to the phase detector; here we use the 

NCO’s sine and cosine outputs.   

The model uses the Matlab sin and cos functions and thus does not provide a method of computing 

those outputs.  For a description of a look-up table  (LUT) approach for computing sine and cosine, see 

[5].  For a description of a Cordic approach, see [6]. 
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Anti-alias Filter, ADC, and Programmable Gain 

 

An anti-alias filter is needed to filter clock harmonics and noise at frequencies above fs/2.  The ADC input 

does not have to be a pure sinusoid; for example, if the third harmonic of the clock is below fs/2, the 

anti-alias filter does not need to attenuate it. 

 

The model assumes an 8-bit ADC using the same sample rate as the NCO, and includes Gaussian noise 

on the input clock.  This noise represents noise of the clock source and the input noise of the ADC.  The 

SNR due to quantization noise of an ideal 8-bit ADC is 6.02*8 + 1.76 dB = 49.9 dB [7].  I somewhat 

arbitrarily chose a Gaussian noise amplitude σ = 0.0015 (See Appendix for Matlab code:  

.0015*randn(1,N)  ). For input clock amplitude = 1 V peak = .707 V rms, this gives an SNR of 20 

log10(.707/.0015) = 53.5 dB.  Thus the Gaussian noise is 3.6 dB below the quantization noise. 

 

The gain of the phase detector is proportional to the reference clock level.  The model does not include 

it, but a programmable gain block (or AGC), as shown in Figure 7, would be useful for setting the 

reference clock level.  The gain might have programmable values of 1, 9/8, 10/8, … etc.  For example, 

given an ADC full-scale input of 2 Vpp, if the clock level at the ADC input were 1.5 Vpp, the programmable 

gain could be set to 10/8, giving a clock level at the Hilbert transformer input of 1.5/2 * 10/8 = 0.94 with 

respect to full-scale. 

 

 

 

 
 

Figure 7.  PLL Block Diagram showing NCO and Loop Filter parameters. 
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Simulation Example 1 

 

This time-domain simulation solves the difference equations of the 2nd-order PLL, as was done in Part 1.  

The PLL model in Part 1 did not include quantization.  Here, I have quantized a few key signals:  the ADC 

output; the Hilbert transformer output; the NCO phase and NCO output. The m-file for this simulation is 

provided in the Appendix.  Table 1 lists the parameter values used. 

 

Table 1.  Simulation Parameters 

Symbol Value Units Description 

fs 
fref 
fnco 
 
A 
-- 
nbits 
 
Knco 
KI 
KL 
 
-- 
-- 
N 
-- 

40 
6.3001 
-100 ppm w.r.t. fref 
 
1 
53.5 
8 
 
1/4096 
6.4E-5 
0.41 
 
20 
12 
40,000 
1 

MHz 
MHz 
 
 
 
dB 
bits 
 
 
 
 
 
bits 
bits 
 
ms 

sample frequency 
external clock frequency 
NCO initial frequency 
 
amplitude of external clock 
ref clock SNR = 20log10(.707/.0015) 
resolution of ADC 
 
NCO gain constant 
Loop filter integrator term 
Loop filter proportional term 
 
NCO phase quantization 
NCO output quantization 
total number of samples 
time duration = N/fs 

 

 

Note that the values of KI and KL used result in loop natural frequency of 2 KHz, with damping of 1.0.  

For a real-world design, we’d probably want to use a lower natural frequency (to minimize spurs and 

noise from the ADC), but I chose this value to keep simulation time manageable.  Note that the loop 

bandwidth of the PLL is slightly greater than the natural frequency.  The external clock frequency is 

6.3001 MHz, and the NCO initial frequency is 100 ppm (630.01 Hz) below that. 

 

The simulation results are shown in Figures 8 through 12.  Figure 8 shows the spectrum of the reference 

clock at the output of the 8-bit ADC.  The highest spur is roughly 75 dB below the carrier level.  Figure 9 

shows the output of the phase detector as the loop acquires lock.  The fuzz on this signal is caused by 

the Gaussian noise and ADC quantization noise.  Figure 10 shows the loop filter output (vtune).  Figure 

11 shows the spectrum of the NCO cosine output signal.  The close-in spectrum of the NCO output is 

shown in Figure 12.  Note that the model does not include the phase noise of the PLL sample clock. 

 

In Figure 11, the highest spur is more than 100 dB below the carrier level – an improvement of more 

than 25 dB compared to the spurious at the ADC output.  This occurs because the spurious level outside 

the 2 kHz bandwidth of the PLL is attenuated by the PLL’s closed-loop response [4].  But given that the 

noise is amplitude noise, how does it affect the PLL at all?  In the phase domain, you can view the noise 
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as a vector modulating the tip of the clock signal [8] (See Figure 14 in the next example).  The vector has 

an amplitude and phase component.  The amplitude component does not affect the PLL.  The phase 

component, if inside the loop bandwidth, appears as noise in the NCO output.  If outside the loop 

bandwidth, it is attenuated by the closed-loop response of the PLL. 

 

Keep in mind that in a particular hardware implementation, spurs may fall within the loop bandwidth 

and thus will not be attenuated by the PLL.    The next example looks more closely at the attenuation of 

noise outside the PLL loop bandwidth. 

 

 

 
Figure 8.  Spectrum at ADC output. 
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Figure 9.  Phase Detector Output. 

 

 
Figure 10.  Loop Filter Output (vtune). 
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Figure 11.  Spectrum of NCO cosine output. 

 

 
Figure 12.  Close-in spectrum of NCO cosine output.  Span = 400 kHz. 
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Simulation Example 2 
 

In this example, we’ll look at how the PLL’s closed-loop response shapes the noise of the reference 
signal.  We’ll use most of the same parameters as in Example 1, but we’ll increase the Gaussian noise 
level.  We’ll also change the loop natural frequency to 20 kHz and reduce the number of samples.  These 
new parameters are coded as follows:   
 

N= 20000             % number of samples 

Vr= A*cos(phi_r) + .05*randn(1,N);       %  ref clock with Gaussian noise 

KI= .0064;       % loop filter integrator gain, fn = 20 kHz 

KL= 4.1;        % loop filter proportional gain, fn= 20 kHz 

 

The reference clock SNR is 20log10(.707/.05) = 23 dB.  It has the spectrum shown in the top of Figure 13.  

The spectrum of the NCO cosine output is shown in the bottom of Figure 13.  You can see the shape of 

the PLL closed-loop response in the noise floor.   

 

Figure 14 is a polar plot of the I/Q output of the Hilbert transformer, derotated to baseband.  As 

discussed in Example 1, you can see that the phase vector is amplitude and phase modulated by the 

Gaussian noise (the noise causes the amplitude to exceed 1.0, which is a little flakey for a real 

application, but it works to demonstrate the concept).  The phase detector computes the error due to 

the phase modulation, and the PLL attenuates components of the phase modulation outside the loop 

bandwidth.  Figure 15 shows the I/Q output of the NCO, derotated to baseband:  you can see that the 

phase noise is much less than that of the reference clock.  Again, the model does not include the phase 

noise of the PLL sample clock.  Figure 16 shows the increased NCO phase noise that results when fn is 

widened to 200 kHz. 

 
Figure 13.  Top:  Spectrum of reference clock with added Gaussian noise.   psd(Vr,2^12,fs/1e6) 

      Bottom:  Spectrum of NCO output for loop fn = 20 kHz.  psd(y(5000:end),2^12,fs/1e6) 

0 2 4 6 8 10 12 14 16 18 20

-80

-60

-40

-20

0

20

40

MHz

dB

0 2 4 6 8 10 12 14 16 18 20

-80

-60

-40

-20

0

20

40

MHz

dB



12 
 

 
Figure 14.  De-rotated phase of Hilbert Transformer output, showing Gaussian noise of reference clock. 

 

 

 

Figure 15.  De-rotated phase of NCO output, fn = 20 kHz. 
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Figure 16.  De-rotated phase of NCO output, fn = 200 kHz.  
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Appendix    Matlab time-domain model of PLL with external reference clock 

 
% pll_ext_clk1.m       5/23/18 Neil Robertson 

 

% Digital PLL model in time using difference equations. 

% External reference clock and complex digital phase detector 

% fn = 2 kHz   NCO initital freq error = -100ppm 

 

N= 40000;                      % number of samples 

fref= 6.3001e6;      % Hz  external clock frequency 

fs= 40e6;                      % Hz sample rate 

Ts = 1/fs;                     % s  sample time 

 

n= 0:N-1;                      % time index 

t= n*Ts*1000;                  % ms 

 

% 31-tap Hilbert xfmr 

b= 2/pi * [-1/15 0 -1/13 0 -1/11 0 -1/9 0 -1/7 0 -1/5 0 -1/3 0 -1 0 1 0 ... 

1/3 0 1/5 0 1/7 0 1/9 0 1/11 0 1/13 0 1/15]; 

   

b1= b.*blackman(31)';        % windowed coefficients 

b1= round(b1*2^12)/2^12; 

 

b2= [0 0 0 0  0 0 0 0  0 0 0 0  0 0 0 1];  % delay of 15 samples (CT of 

filter) 

 

% Create reference signal 

 

A = 1.0;              % reference signal amplitude 

Vr= A*cos(2*pi*fref*n*Ts) + .0015*randn(1,N); % ref signal with Gaussian 

noise 

 

nbits= 8; 

Vr= floor(2^(nbits-1)*Vr)/2^(nbits-1);  % ADC quantization of ref signal 

 

% Apply reference signal to Hilbert transformer 

Ir= filter(b2,1,Vr);     % I channel HT output 

Qr= filter(b1,1,Vr);     % Q channel HT output 

 

% PLL 

 

Knco= 1/4096;                   % NCO gain constant 

KI= 6.4e-5;                     % loop filter integrator gain, fn= 2 kHz 

KL= 0.41;                       % loop filter linear gain, fn= 2 kHz 

 

 

fnco = fref*(1-100e-6);        % Hz NCO initial frequency 

u(1) = 0; 

int(1)= 0; 

phase_error(1)= 0; 

vtune(1) = 0; 
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% Compute difference equations 

for n= 2:N; 

    % NCO 

    x = fnco*Ts + u(n-1) + vtune(n-1)*Knco;     % cycles  NCO phase 

    u(n) = mod(x,1);                          % cycles  NCO phase mod 1 

    u(n)= fix(2^20*u(n))/2^20;      % quantized phase 20 bits 

      Inco = cos(2*pi*u(n-1)); 

      Qnco = sin(2*pi*u(n-1));                  

         y(n)= round(2^11*Inco)/2^11;          % quantized NCO output 12 bits 

    % Phase Detector 

    pe= -Ir(n-1)*Qnco + Qr(n-1)*Inco; 

    phase_error(n) = pe; 

         

    % Loop Filter 

    int(n) = KI*pe + int(n-1);                 % integrator 

    vtune(n) = int(n) + KL*pe;                 % loop filter output 

end 

 

 

psd(Vr,2^12,fs/1e6)            % plot spectrum at ADC output 

xlabel('MHz'),ylabel('dB') 

axis([0 20 -80 40]),figure 

 

plot(t,phase_error),grid       % plot phase detector output 

axis([0 1 -1 1]) 

xlabel('t (ms)'),ylabel('phase error'),figure 

 

plot(t,vtune),grid         % plot loop filter output vtune     

xlabel('t (ms)'),ylabel('vtune'),figure 

 

psd(y(20000:end),2^12,fs/1e6)     % plot NCO cosine output spectrum 

xlabel('MHz'),ylabel('dB') 

axis([0 20 -80 40]),figure 

 

psd(y(20000:end),2^14,fs/1e6)      % plot close-in NCO spectrum 

axis([fref/1e6-.2 fref/1e6+.2 -80 40]) 

xlabel('MHz'),ylabel('dB') 

 


